Lifting Modular Symbols of Non-critical Slope
نویسنده
چکیده
We give a new proof of the result, originally proved in unpublished work of Glenn Stevens [7], that every modular eigensymbol of non-critical slope lifts uniquely to a rigid-analytic distribution-valued eigensymbol. The proof is algorithmic and facilitates the efficient calculation of certain padic integrals.
منابع مشابه
OVERCONVERGENT MODULAR SYMBOLS AND p-ADIC L-FUNCTIONS
Cet article est exploration constructive des rapports entre les symboles modulaires classique et les symboles modulaires p-adiques surconvergents. Plus précisément, on donne une preuve constructive d’un theorème de controle (Theoreme 1.1) du deuxiéme auteur [20]; ce theoréme preuve l’existence et l’unicité des “liftings propres” des symboles propres modulaires classiques de pente non-critique. ...
متن کاملCritical slope p-adic L-functions
Let g be an eigenform of weight k+2 on Γ0(p)∩Γ1(N) with p N . If g is non-critical (i.e. of slope less than k + 1), using the methods of [1, 20], one can attach a p-adic L-function to g which is uniquely determined by its interpolation property together with a bound on its growth. However, in the critical slope case, the corresponding growth bound is too large to uniquely determine the p-adic L...
متن کاملP-adic Family of Half-integral Weight Modular Forms and Overconvergent Shintani Lifting
Abstract. The goal of this paper is to construct the p-adic analytic family of overconvergent half-integral weight modular forms using Hecke-equivariant overconvergent Shintani lifting. The classical Shintani map(see [Shn]) is the Hecke-equivariant map from the space of cusp forms of integral weight to the space of cusp forms of half-integral weight. Glenn Stevens proved in [St1] that there is ...
متن کاملTermination Transformation by Tree Lifting Ordering
An extension of a modular termination result for term rewriting systems (TRSs, for short) by A. Middeldorp (1989) is presented. We intended to obtain this by adapting the dummy elimination transformation by M. C. F. Ferreira and H. Zantema (1995) under the presence of a non-collapsing non-duplicating terminating TRS whose function symbols are all to be eliminated. We propose a tree lifting orde...
متن کاملSlopes of Modular Forms
Motivation: it would be great if we could understand the p-adic variation of the Up-eigenvalues of modular forms as the weights and/or levels varied. (More generally, it would be really great if we could understand how the local p-adic Galois representations attached to automorphic forms behave – for example, even very weak “equidistribution” results here would presumably imply very strong auto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007